Gas & Steam Turbines

Gas and steam turbines are available in a wide range of sizes. They are commonly used for power generation and a variety of mechanical drive applications. Steam turbines operate in thermal and nuclear power plants; they also are being used more and more with gas turbines in combined-cycle power plants. Gas turbines are often favored for their flexibility and smaller footprint as well as their relative ease at bringing a new plant online or supplementing an existing plant.

A common goal for both machine types is high efficiency, which incorporates lower fuel usage and reduced carbon emissions. Advances in blading design and higher-temperature operation have contributed to improved steam turbine thermal efficiency. In the industrial gas turbine arena, advanced cooling strategies have contributed to increased efficiency, while improvements in combustor technology have yielded reduced pollutant emissions. These machines have much in common with aircraft engine gas turbines, and, indeed, aeroderivative engines are used in some industrial situations, particularly when flexibility and portability are important considerations.

Gas turbine combustor ( Courtesy MTU Aero Engines Gmbh.)

Even with such advanced technology, customers demand even greater performance. Gas and steam machines have a long service life. As customer requirements change, suppliers are asked to upgrade and modify existing machines — a challenging task due to the constraints imposed by the existing machine.